题目内容
【题目】若抛物线L:
(a,b,c是常数,abc≠0)与直线l都经过y轴上的一点P,且抛物线L的顶点Q在直线l上,则称此直线l与该抛物线L具有“一带一路”关系.此时,直线l叫做抛物线L的“带线”,抛物线L叫做直线l的“路线”.
(1)若直线y=mx+1与抛物线
具有“一带一路”关系,求m,n的值;
(2)若某“路线”L的顶点在反比例函数
的图象上,它的“带线”l的解析式为y=2x﹣4,求此“路线”L的解析式;
(3)当常数k满足
≤k≤2时,求抛物线L:
的“带线”l与x轴,y轴所围成的三角形面积的取值范围.
【答案】(1)m=﹣1,n=1;(2)
或
;(3)
≤S≤
.
【解析】
试题分析:(1)找出直线y=mx+1与y轴的交点坐标,将其代入抛物线解析式中即可求出n的值;再根据抛物线的解析式找出顶点坐标,将其代入直线解析式中即可得出结论;
(2)找出直线与反比例函数图象的交点坐标,由此设出抛物线的解析式,再由直线的解析式找出直线与x轴的交点坐标,将其代入抛物线解析式中即可得出结论;
(3)由抛物线解析式找出抛物线与y轴的交点坐标,再根据抛物线的解析式找出其顶点坐标,由两点坐标结合待定系数法即可得出与该抛物线对应的“带线”l的解析式,找出该直线与x、y轴的交点坐标,结合三角形的面积找出面积S关于k的关系上,由二次函数的性质即可得出结论.
试题解析:(1)令直线y=mx+1中x=0,则y=1,即直线与y轴的交点为(0,1);
将(0,1)代入抛物线
中,得n=1.
∵抛物线的解析式为
=
,∴抛物线的顶点坐标为(1,0).
将点(1,0)代入到直线y=mx+1中,得:0=m+1,解得:m=﹣1.
答:m=﹣1,n=1.
(2)将y=2x﹣4代入到
中有,2x﹣4=
,即
,解得:
,
,∴该“路线”L的顶点坐标为(﹣1,﹣6)或(3,2).
令“带线”l:y=2x﹣4中x=0,则y=﹣4,∴“路线”L的图象过点(0,﹣4).
设该“路线”L的解析式为
或
,由题意得:
或
,解得:m=2,n=
,∴此“路线”L的解析式为
或
.
(3)令抛物线L:
中x=0,则y=k,即该抛物线与y轴的交点为(0,k).
抛物线L:
的顶点坐标为(
,
),设“带线”l的解析式为y=px+k,∵点(
,
)在y=px+k上,∴
,解得:p=
,∴“带线”l的解析式为
.
令∴“带线”l:
中y=0,则
,解得:x=
.
即“带线”l与x轴的交点为(
,0),与y轴的交点为(0,k),∴“带线”l与x轴,y轴所围成的三角形面积S=
=
=
=
=
,∵
≤k≤2,∴
≤
≤2,∴S=
,当
=1时,S有最大值,最大值为
;当
=2时,S有最小值,最小值为
.
故抛物线L:y=ax2+(3k2﹣2k+1)x+k的“带线”l与x轴,y轴所围成的三角形面积的取值范围为
≤S≤
.
【题目】二次函数y=ax2+bx+c图象上部分点的坐标满足下表:
x | … | -3 | -2 | -1 | 0 | 1 | … |
y | … | -3 | -2 | -3 | -6 | -11 | … |
则该函数图象上的点(﹣6,y1),(m2+2m+3,y2)则下列选项正确的是( )
A.y1>y2B.y1≥y2C.y1<y2D.y1≤y2