题目内容
如图,△ABC为等边三角形,AE=CD,AD、BE相交于点P,BQ⊥AD于Q,PQ=4,PE=1.
(1)求证:∠BPQ=60°(提示:利用三角形全等、外角的性质)
(2)求BE的长.
已知无论n取什么实数,点P(n, 2n-3)都在直线l上,若Q(a,b)是直线l上的点,则b-2a的值等于 .
如图,点O是等边△ABC内一点,D是△ABC外的一点,∠AOB=110°,∠BOC=α,△BOC≌△ADC,∠OCD=60°,连接OD.
(1)求证:△OCD是等边三角形;
(2)当α=150°时,试判断△AOD的形状,并说明理由;
(3)△AOD能否为等边三角形?为什么?
(4)探究:当α为多少度时,△AOD是等腰三角形.
如图,在第1个△中,∠B=30°,;在边上任取一点D,延长CA1到A2,使,得到第2个△;在边上任取一点E,延长到,使,得到第3个△,…按此做法继续下去,则第n个三角形中以为顶点的内角度数是( )
A. B. C. D.
如图所示,亮亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样的三角形,那么这两个三角形完全一样的依据是( )
A.SSS B.SAS C.AAS D.ASA
(1)计算:(x+y)2-y(2x+y)
(2)先计算,再把计算所得的多项式分解因式:(12a3-12a2+3a)÷3a.
如图,△ABC中,AB=AC,AD⊥AB,交BC于点D,且∠CAD=30°,CD=3,则BD= .
如图所示,李华晚上在路灯下散步.已知李华的身高AB=1.8米,灯柱的高OP=O'P'=18米,两灯柱之间的距离OO'=30米.
(1)若李华距灯柱OP的水平距离OA=18米,求他影子AC的长;
(2)若李华在两路灯之间行走,则他前后的两个影子的长度之和(DA+AC)是否是定值?若为定值,求出该定值;若不是请说明理由.
如图,△ABC 中,已知AB=8,BC=5,AC=7,则它的内切圆的半径为 ______ .