题目内容
(本题满分4分)如果x,y满足︱x︱=3,︱y︱=2,求出x+y所有可能的值。
(本小题7分)清明节扫墓是中华民族的传统习俗,为适应需求,某商店决定销售甲厂家的高、中、低档三个品种盆花和乙厂家的精装、简装两个品种盆花.现需要在甲乙两个厂家中各选一个品种.
(1)写出所有选购方案(利用树状图或列表法求选购方案)
(2)若(1)中各选购方案被选中的可能性相同,则甲厂家高档盆花被选中的概率是多少?
(3)某中学组织学生到烈士陵园扫墓,欲购买两个品种共32盆花(价格如下表),其中指定一个品种是甲厂家的高档盆花,再从乙厂家挑选一个品种,若恰好用1000元.请问购买了甲厂家几盆高档盆花?
品种
高档
中档
低档
精装
简装
价格(元/盆)
60
40
25
50
20
下列四个图形中,既是轴对称图形又是中心对称图形的是
如图,在△ABC中,∠ACB=90°,∠B=30°,AC=1,AC在直线l上.将△ABC绕点A顺时针旋转到位置①,可得到点P1,此时AP1=2;将位置①的三角形绕点P1顺时针旋转到位置②,可得到点P2,此时AP2=2+;将位置②的三角形绕点P2顺时针旋转到位置③,可得到点P3,此时AP3=3+;…,按此规律继续旋转,直到得到点P2014为止,则P1P2014=( ).
A.2012+671 B.2013+671
C.2014+671 D.2015+671
若x<y,则下列式子中错误的是( ).
A.x-2<y-2 B.x+2<y+2 C.< D.-2x<-2y
(本题满分4分)先画数轴,在数轴上画出表示下列各数和它们的相反数的点: 3 , -2 , , 0 ;再按从小到大的顺序,用“<”号把这些数连接起来。
比较大小:①-5 ____ _-6 ② +__ _+ ③ -() 0;
因式分解(每小题5分,计20分):
(1)
(2)
(3)
(4)
问题探究:
(一)新知学习:
圆内接四边形的判断定理:如果四边形对角互补,那么这个四边形内接于圆(即如果四边形EFGH的对角互补,那么四边形EFGH的四个顶点E、F、G、H都在同个圆上).
(二)问题解决:
已知⊙O的半径为2,AB,CD是⊙O的直径.P是上任意一点,过点P分别作AB,CD的垂线,垂足分别为N,M.
(1)若直径AB⊥CD,对于上任意一点P(不与B、C重合)(如图一),证明四边形PMON内接于圆,并求此圆直径的长;
(2)若直径AB⊥CD,在点P(不与B、C重合)从B运动到C的过程汇总,证明MN的长为定值,并求其定值;
(3)若直径AB与CD相交成120°角.
①当点P运动到的中点P1时(如图二),求MN的长;
②当点P(不与B、C重合)从B运动到C的过程中(如图三),证明MN的长为定值.
(4)试问当直径AB与CD相交成多少度角时,MN的长取最大值,并写出其最大值.