题目内容
如图,在平面直角坐标系中,点P的坐标为(-4,0),⊙P的半径为2,将⊙P沿x轴向右平移4个单位长度得⊙P1.(1)画出⊙P1,并直接判断⊙P与⊙P1的位置关系;
(2)设⊙P1与x轴正半轴,y轴正半轴的交点分别为A,B,求劣弧AB与弦AB围成的图形的面积(结果保留π).
解:(1)画出⊙P1如下:

⊙P与⊙P1外切。
(2)劣弧AB与弦AB围成的图形的面积为:
解析:
(1)将⊙P沿x轴向右平移4个单位长度得⊙P1后,两圆圆心距与两圆半径之和相等,故⊙P与⊙P1外切。
(2)劣弧AB与弦AB围成的图形的面积实际等于圆的四分之一面积减去∆OAB的面积,这样根据已知条件即易求出。
⊙P与⊙P1外切。
(2)劣弧AB与弦AB围成的图形的面积为:
(1)将⊙P沿x轴向右平移4个单位长度得⊙P1后,两圆圆心距与两圆半径之和相等,故⊙P与⊙P1外切。
(2)劣弧AB与弦AB围成的图形的面积实际等于圆的四分之一面积减去∆OAB的面积,这样根据已知条件即易求出。
练习册系列答案
相关题目