题目内容

18.如图,将矩形ABCD沿对角线BD所在直线折叠,点C落在同一平面内,落点记为C′,BC′与AD交于点E,若AB=6,BC=8,则DE的长为(  )
A.6.25B.6.35C.6.45D.6.55

分析 由翻转变换的性质得到∠EBD=∠CBD,根据平行线的性质得到∠EDB=∠CBD,得到EB=ED,设DE=x,根据勾股定理列方程,解方程即可.

解答 解:由翻转变换的性质可知,∠EBD=∠CBD,
∵AD∥BC,
∴∠EDB=∠CBD,
∴∠EDB=∠EBD,
∴EB=ED,
设DE=x,则BE=x,AE=8-x,
在Rt△ABE中,x2=62+(8-x)2
解得,x=6.25,
故选:A.

点评 本题考查的是矩形的性质、翻转变换的性质,翻转变换是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网