题目内容
先阅读,再解题:
因为1-
=
,
-
=
,
-
=
,…所以
+
+
+…+
=(1-
)+(
-
)+(
-
)+…+(
-
)=1-
+
-
+
-
+…+
-
=1-
.=
参照上述解法计算:
+
+
+…+
.
因为1-
| 1 |
| 2 |
| 1 |
| 1×2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2×3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 3×4 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 49×50 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 49 |
| 1 |
| 50 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 49 |
| 1 |
| 50 |
| 1 |
| 50 |
| 49 |
| 50 |
参照上述解法计算:
| 2013 |
| 1×3 |
| 2013 |
| 3×5 |
| 2013 |
| 5×7 |
| 2013 |
| 2011×2013 |
分析:观察已知等式得到拆项规律,原式变形后计算即可得到结果.
解答:解:根据题意得:
原式=2013×
×(1-
+
-
+…+
-
)
=2013×
×
=1006.
原式=2013×
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 5 |
| 1 |
| 2011 |
| 1 |
| 2013 |
=2013×
| 1 |
| 2 |
| 2012 |
| 2013 |
=1006.
点评:此题考查了有理数的混合运算,熟练掌握运算法则是解本题的关键.
练习册系列答案
相关题目