题目内容
已知关于x的不等式组的解集为3≤x<5,则的值为 .
﹣2解:不等式组
由①得,x≥a+b,
由②得,x<,
∴,
解得 ,
∴=﹣2.
故答案为﹣2.
△ABC是等边三角形,点D是射线上BC上的一个动点(点D不与点B,C重合,△ADE是以AD为边的等边三角形,过点E作BC的平行线,分别交射线AB,AC于点F,G,连接BE。 (10′)
如图1所示,当点D在线段BC上时。(1)求证:△AEB≌△ADC;(2)探究四边形BCGE是哪种特殊的四边形,并说明理由。
如图2所示,当点D在BC的延长线上时,直接写出(1)中的两个结论是否成立。
图1
图2
国家游泳中心“水立方”是北京2008年奥运会场馆之一,它的外层膜的展开面积约为260 000平方米,用科学记数法表示是__________平方米.
某中学新建了一栋4层的教学大楼,每层楼有8间教室,进出这栋大楼共有4道门,其中两道正门大小相同,两道侧门大小也相同.安全检查中,对4道门进行了测试:当同时开启一扇正门和两扇侧门,1分钟内可以通过280名学生;当同时开启一扇正门和一扇侧门时,4分钟内可通过800名学生.
(1)求平均每分钟一道正门的一道侧门各可以通过通过多少名学生?
(2)检查中发现,紧急情况时因学生拥挤,出门的效率降低20%.安全检查规定,在紧急情况下全大楼的学生应在5分钟内通过这4道门安全撤离.假设这栋教学大楼每间教室最多有45名学生,则建造的这4道门是否符合安全规定?请你说明理由.
m为负有理数,9x2+mxy+16y2是完全平方式,求m的值
某房地产开发公司计划建A、B两种户型的住房共80套,已知该公司所筹资金不少于2090万元,但不超过2096万元,且所筹资金全部用于建房两种户型的建房成本和售价如下表:
(1)该公司对这两种户型住房有几种建房方案?请写出所有方案;
(2)该公司如何建房可获得最大利润?最大利润是多少?(利润=售价﹣成本)
已知一元二次方程的两根为,则 .
一元二次方程的解是( )
A., B.,
C., D.,