题目内容

本市新建的滴水湖是圆形人工湖.为测量该湖的半径,小杰和小丽沿湖边选取A、B、C三根木柱,使得A、B之间的距离与A、C之间的距离相等,并测得BC长为120米,A到BC的距离为4米,如图所示.请你帮他们求出滴水湖的半径.
考点:垂径定理的应用,勾股定理
专题:
分析:设圆心为点O,连接OB,OA,AB=AC,得出
AB
=
AC
,再根据等弦对等弧,得出点A是弧BC的中点.结合垂径定理的推论,知OA垂直平分弦,设圆的半径,结合垂径定理和勾股定理列出关于半径的方程,即可求得圆的半径.
解答:解:设圆心为点O,连接OB,OA,OA交线段BC于点D,
∵AB=AC,
AB
=
AC

∴OA⊥BC,
∴BD=DC=
1
2
BC=60
∵DA=4米,
在Rt△BDO中,OB2=OD2+BD2
设OB=x米,
则x2=(x-4)2+602
解得x=452.
答:人工湖的半径为452米.
点评:此题考查了垂径定理的应用,用到的知识点是等弦对等弧、垂径定理的推论、勾股定理,关键是根据题意作出辅助线,构造直角三角形.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网