题目内容
化简的结果是( )
A. B. C. D.
(本题满分12分,每小题满分各4分)
已知在平面直角坐标系中(如图),抛物线与轴的负半轴相交于点,与轴相交于点,.点在抛物线上,线段与轴的正半轴交于点,线段与轴相交于点.设点的横坐标为.
(1)求这条抛物线的解析式;
(2)用含的代数式表示线段的长;
(3)当时,求的正弦值.
多项式与多项式的公因式是( )
(A) (B) (C) (D)
在平面直角坐标系中,以原点为中心,把点A(4,5)逆时针旋转90O,得到的点B的坐标为 .
只用下列哪一种正多边形,可以进行平面镶嵌( )
A.正五边形 B.正六边形 C.正八边形 D.正十边形
如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,.
(1)求证:PB是的切线;
(2)连接OP,若,且OP=8,的半径为,求BC的长.
如图,港口A在观测站O的正东方向,OA=4,某船从港口A出发,沿北偏东15°方向航行一段距离后到达B处,此时从观测站O处测得该船位于北偏东60°的方向,则该船航行的距离(即AB的长)为 .
根据某网站调查,2014年网民们最关注的热点话题分别有:消费、教育、环保、反腐及其他共五类.根据调查的部分相关数据,绘制的统计图表如下:
根据所给信息解答下列问题:
(1)请补全条形统计图并在图中标明相应数据;
(2)若菏泽市约有880万人口,请你估计最关注环保问题的人数约为多少万人?
(3)在这次调查中,某单位共有甲、乙、丙、丁四人最关注教育问题,现准备从这四人中随机抽取两人进行座谈,试用列表或树形图的方法求抽取的两人恰好是甲和乙的概率.
下列计算正确的是( )
A. B.
C. D.