题目内容

一张长方形桌子可坐6人,2张桌子拼在一起可坐8人,按如图方式讲桌子拼在一起.
那么3张桌子拼在一起可坐
 
人,n张桌子拼在一起可坐
 
人.
考点:规律型:图形的变化类
专题:
分析:根据图形查出2张桌子,3张桌子可坐的人数,然后得出每多一张桌子可多坐2人的规律,然后解答.
解答:解:①由图可知,2张桌子拼在一起可坐8人,
3张桌子拼在一起可坐10人,

依此类推,每多一张桌子可多坐2人,
所以,n张桌子拼在一起可坐2n+4;
故答案为:10;2n+4.
点评:本题是对图形变化规律的考查,根据图形,观察得出每多一张桌子可多坐2人的规律并求出n张桌子可坐的人数的表达式是解题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网