题目内容
一次函数的图象与轴交点的坐标是( )
A.(0,-4) B.(0,4) C.(2,0) D.(-2,0)
求x的值:
(1);
(2)8(x-1)3=27.
菱形具有而矩形不一定具有的性质是
A.内角和等于360° B.对角相等
C.对边平行且相等 D.对角线互相垂直
如图,将一幅三角尺叠放在一起,使直角顶点重合于点O,绕点O任意转动其中一个三角尺,则与∠AOD始终相等的角是 .
若,则等于( )
A.-1 B.1 C. D.
(本题满分12分)设抛物线y=mx2-3mx+2(m≠0)与x轴的交点为A(x1,0),B(x2,0),且x12+x22=17,其中x1< x2,抛物线的顶点为M,点P(a,b)为抛物线上一动点.
(1)求抛物线的解析式和顶点M的坐标;
(2)当∠APB=90°时,求P点坐标;
(3)连接AC,过P点做直线PE∥AC交x轴于点E,是否存在一点P,使以点A、C、P、E为顶点的四边形为平行四边形.若不存在试说明理由;若存在,试求出点P的坐标.
如图,在正方形ABCD中,点P是AB上一动点(不与A、B重合),对角线AC,BD相交于点O,过点P分别作AC,BD的垂线,分别交AC,BD于点E,F,交AD,BC于点M,N.下列结论:①△APE≌△AME;
②PM+PN=AC;
③PE2+PF2=PO2;
④△POF∽△BNF;
⑤当△PMN∽△AMP时,点P是AB的中点.
其中正确的结论是 .
(本题满分7分)如图,在□ABCD中,过A、C、D三点的⊙O交AB于点E,连接DE、CE,∠CDE=∠BCE.
(1)求证:AD=CE;
(2)判断直线BC与⊙O的位置关系,并说明理由;
(3)若BC=3,DE=6,求BE的长.
不等式组的整数解 .