ÌâÄ¿ÄÚÈÝ
£¨2013•ËÞ³ÇÇøÒ»Ä££©Í¬Ñ§ÃÇ£¬ÔÚÎÒÃǽøÈë¸ßÖÐÒԺ󣬽«»¹»áѧµ½ÏÂÃæÈý½Çº¯Êý¹«Ê½£º
sin£¨¦Á-¦Â£©=sin¦Ácos¦Â-cos¦Ásin¦Â£¬
cos£¨¦Á-¦Â£©=cos¦Ácos¦Â+sin¦Ásin¦Â
Àý£ºsin15¡ã=sin£¨45¡ã-30¡ã£©=sin45¡ãcos30¡ã-cos45¡ãsin30¡ã=
£¨1£©ÊÔ·ÂÕÕÀýÌ⣬Çó³öcos15¡ãµÄ׼ȷֵ£»
£¨2£©ÎÒÃÇÖªµÀ£¬tan¦Á=
£¬ÊÔÇó³ötan15¡ãµÄ׼ȷֵ£®
sin£¨¦Á-¦Â£©=sin¦Ácos¦Â-cos¦Ásin¦Â£¬
cos£¨¦Á-¦Â£©=cos¦Ácos¦Â+sin¦Ásin¦Â
Àý£ºsin15¡ã=sin£¨45¡ã-30¡ã£©=sin45¡ãcos30¡ã-cos45¡ãsin30¡ã=
| ||||
| 4 |
£¨1£©ÊÔ·ÂÕÕÀýÌ⣬Çó³öcos15¡ãµÄ׼ȷֵ£»
£¨2£©ÎÒÃÇÖªµÀ£¬tan¦Á=
| sina |
| cosa |
·ÖÎö£º´ÓÌâÖиø³öµÄÐÅÏ¢½øÐдðÌ⣺
£¨1£©°Ñ15¡ã»¯Îª45¡ã-30¡ãÖ±½Ó´úÈëÈý½Çº¯Êý¹«Ê½£ºcos£¨¦Á-¦Â£©=cos¦Ácos¦Â+sin¦Ásin¦Â¼ÆËã¼´¿É£»
£¨2£©°Ñtan15¡ã´úÈëtan¦Á=
£¬ÔÙ°Ñ£¨1£©¼°ÀýÌâÖеÄÊýÖµ´úÈë¼´¿É£®
£¨1£©°Ñ15¡ã»¯Îª45¡ã-30¡ãÖ±½Ó´úÈëÈý½Çº¯Êý¹«Ê½£ºcos£¨¦Á-¦Â£©=cos¦Ácos¦Â+sin¦Ásin¦Â¼ÆËã¼´¿É£»
£¨2£©°Ñtan15¡ã´úÈëtan¦Á=
| sina |
| cosa |
½â´ð£º½â£¨1£©cos15¡ã=cos45¡ãcos30¡ã+sin45¡ãsin30¡ã=
¡Á
+
¡Á
=
£»
£¨2£©tan15¡ã=
=
=2-
£®
| ||
| 2 |
| ||
| 2 |
| ||
| 2 |
| 1 |
| 2 |
| ||||
| 4 |
£¨2£©tan15¡ã=
| sin15¡ã |
| cos15¡ã |
| ||||||
|
| 3 |
µãÆÀ£º±¾Ì⿼²éÁËÌØÊâ½ÇµÄÈý½Çº¯ÊýÖµµÄÓ¦Óã¬ÊôÓÚÐÂÌâÐÍ£¬½â´ð±¾ÌâµÄ¹Ø¼üÊǸù¾ÝÌâÄ¿ÖÐËù¸øÐÅÏ¢½áºÏÌØÊâ½ÇµÄÈý½Çº¯ÊýÖµÀ´Çó½â£®
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿