题目内容
如图,在等腰直角三角形ABC中,∠C=90°,AC=6,D是AC上一点,若tan∠DBA=A.
B.
C.
D.
【答案】分析:首先过点D作DE⊥AB于E,可得△ADE是等腰直角三角形,由tan∠DBA=
,易得BE=5DE=5AE,又由在等腰直角三角形ABC中,∠C=90°,AC=6,可求得AE,AD的长,继而求得CD的长,然后由勾股定理求得BD的长,继而求得sin∠CBD的值.
解答:
解:过点D作DE⊥AB于E,
∵tan∠DBA=
=
,
∴BE=5DE,
∵△ABC为等腰直角三角形,
∴∠A=45°,
∴AE=DE.
∴BE=5AE,
又∵AC=6,
∴AB=6
.
∴AE+BE=5AE+AE=6
,
∴AE=
,
∴AD=
=2,
∴CD=AC-AD=6-2=4,
在Rt△BCD中,BD=
=2
,
∴sin∠CBD=
=
=
.
故选C.
点评:此题考查了等腰直角三角形的性质、勾股定理以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
解答:
∵tan∠DBA=
∴BE=5DE,
∵△ABC为等腰直角三角形,
∴∠A=45°,
∴AE=DE.
∴BE=5AE,
又∵AC=6,
∴AB=6
∴AE+BE=5AE+AE=6
∴AE=
∴AD=
∴CD=AC-AD=6-2=4,
在Rt△BCD中,BD=
∴sin∠CBD=
故选C.
点评:此题考查了等腰直角三角形的性质、勾股定理以及三角函数的定义.此题难度适中,注意掌握辅助线的作法,注意数形结合思想的应用.
练习册系列答案
相关题目
教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:

(1)sad
的值为( ▼ )
(2)对于
,∠A的正对值sad A的取值范围是 ▼ .
(3)已知
,其中
为锐角,试求sad
的值.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=
根据上述对角的正对定义,解下列问题:
(1)sad
| A. | B.1 | C. | D.2 |
(3)已知
教材中第25章锐角的三角比,在这章的小结中有如下一段话:锐角三角比定量地描述了在直角三角形中边角之间的联系.在直角三角形中,一个锐角的大小与两条边长的比值相互唯一确定,因此边长与角的大小之间可以相互转化.
类似的,可以在等腰三角形中建立边角之间的联系,我们定义:等腰三角形中底边与腰的比叫做顶角的正对(sad).如图,在△ABC中,AB=AC,顶角A的正对记作sadA,这时
sad A=
.容易知道一个角的大小与这个角的正对值也是相互唯一确定的.
根据上述对角的正对定义,解下列问题:![]()
(1)sad
的值为( ▼ )
| A. | B.1 | C. | D.2 |
(3)已知