题目内容
观察下列有规律的数:| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 20 |
| 1 |
| 30 |
| 1 |
| 42 |
根据其规律,则
(1)第7个数是
(2)第n个数是
(3)
| 1 |
| 156 |
(4)计算:
| 1 |
| 2 |
| 1 |
| 6 |
| 1 |
| 12 |
| 1 |
| 20 |
| 1 |
| 30 |
| 1 |
| 42 |
| 1 |
| n(n+1) |
分析:根据所给的数据,发现:第n个数的分子是1,分母是n(n+1).根据这一规律.即用代数式表示为
.
即可计算:第7个数是
=
;当分母是156时,即n(n+1)=156,n=12或n=-13(应舍去).
(4)中,
=
-
.根据上述规律进行拆分,发现抵消的规律,即可计算.
| 1 |
| n(n+1) |
即可计算:第7个数是
| 1 |
| 7×8 |
| 1 |
| 56 |
(4)中,
| 1 |
| n(n+1) |
| 1 |
| n |
| 1 |
| n+1 |
解答:解:根据以上分析(1)第7个数是
=
;
(2)第n个数是
;
(3)根据上述规律,得n(n+1)=156,n=12或n=-13(负数应舍去).
(4)解:原式=
+
+
+
+
+
+…+
-
=1-
+
-
+
-
+
-
+…+
-
=1-
=
.
| 1 |
| 7×8 |
| 1 |
| 56 |
(2)第n个数是
| 1 |
| n(n+1) |
(3)根据上述规律,得n(n+1)=156,n=12或n=-13(负数应舍去).
(4)解:原式=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| 5×6 |
| 1 |
| 6×7 |
| 1 |
| n |
| 1 |
| n+1 |
=1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| n+1 |
| n |
| n+1 |
点评:此题主要是发现分母的规律,能够根据规律进行拆分计算.
练习册系列答案
相关题目