题目内容

某河道上有一个半圆形的拱桥,河两岸筑有拦水堤坝,其半圆形桥洞的横截面如图所示.已知上、下桥的坡面线ME、NF与半圆相切,上、下桥斜面的坡度i=1∶3.7,桥下水深OP=5米,水面宽度CD=24米.设半圆的圆心为O,直径AB在坡角顶点M、N的连线上,求从M点上坡、过桥、下坡到N点的最短路径长.(参考数据:π≈3,≈1.7,tan15°=

解:连结OD、OE、OF,由垂径定理知:PD=CD=12(m)
    在Rt△OPD中,OD==13(m)
    ∴OE=OD=13m
    ∵tan∠EMO=i= 1∶3.7 ,tan15°==≈1:3.7
    ∴∠EMO=15°
    由切线性质知∠OEM=90°∴∠EOM=75°
    同理得∠NOF=75°∴∠EOF=180°-75°×2=30°
    在Rt△OEM中,tan15°==≈1∶3.7

        ∴EM=3.7×13=48.1(m)
又EF的弧长==6.5(m)
∴48.1×2+6.5=102.7(m),
即从M点上坡、过桥、再下坡到N点的最短路径长为102.7米
(注:答案在102.5m—103m间只要过程正确,不扣分)

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网