题目内容
.
被誉为“最美高铁”的长春至珲春城际铁路途经许多隧道和桥梁,其中隧道累计长度与桥梁累计长度之和为342km,隧道累计长度的2倍比桥梁累计长度多36km. 求隧道累计长度与桥梁累计长度.
解不等式组:.
如图1,抛物线与x轴相交于A,B两点(点A在点B的右侧),与y轴交于点C,点D是抛物线的顶点,连接AD、BD.
求△ABD的面积;
如图2,连接AC、BC,若点P是直线AC上方抛物线上一动点,过P作PE//BC交AC于点E,作PQ//y轴交AC于点Q,当△PQE周长最大时,将△PQE沿着直线AC平移,记移动中的△PQE为,连接,求△PQE的周长的最大值及的最小值;
如图3,点G为x轴正半轴上一点,且OG=OC,连接CG,过G作GH⊥AC于点H,将△CGH绕点O顺时针旋转(),记旋转中的△CGH为,在旋转过程中,直线,分别与直线AC交于点M,N, 能否成为等腰三角形?若能直接写出所有满足条件的的值;若不能,请说明理由.
如图直线EF//GH,点A、点B分别在EF、GH上,连接AB, 的角平分线AD交GH于D,过点D作交AB延长线于点C,若,求的度数。
下列图形都是由同样大小的●和○按照一定规律组成的,其中第①个图中共有6个●,第②个图中共有13个●,第③个图中共有25个●,第④个图中共有42个●,…,照此规律排列下去,则第⑦个图中●的个数为( )
A. 91 B. 112 C. 123 D. 160
如果△ABC∽△DEF,且△ABC与△DEF的面积比为4:9,那么△ABC与△DEF的相似比为( ).
A. 2:3 B. 4:9 C. 3:2 D. 9:4
如图所示,在同一水平面从左到右依次是大厦、别墅、小山、小彬为了测得小山的高度,在大厦的楼顶B处测得山顶C的俯角∠GBC=13°,在别墅的大门A点处测得大厦的楼顶B点的仰角∠BAO=35°,山坡AC的坡度i=1:2,OA=500米,则山C的垂直高度约为( )(参考数据:sin13°≈0.22,tan13°≈0.23,sin35°≈0.57)
A. 161.0 B. 116.4 C. 106.8 D. 76.2
如图为放置在水平桌面上的台灯的平面示意图,灯臂AO长为40cm,与水平面所形成的夹角∠OAM为75°.由光源O射出的边缘光线OC,OB与水平面所形成的夹角∠OCA,∠OBA分别为90°和30°,求该台灯照亮水平面的宽度BC(不考虑其他因素,结果精确到0.1cm.温馨提示:sin75°≈0.97,cos75°≈0.26,).