题目内容
如图,在梯形ABCD中,AD∥BC,BC=2AD,点M、N分别是AD、BC的中点,已知
=
,
=
,试用
、
分别表示
、
、
.
∴
又∵点M是AD的中点,
∴
∴
②连接AC.
∵
∴
而
∴
③连接ND.
∵BC=2AD,点N是BC的中点,
∴AD=BN;
∵AD∥BC,
∴四边形ABND是平行四边形,
∴
∵
∴
∴
分析:①根据平面向量的几何意义计算;
②连接AC,构建△ABC和△ADC,然后利用向量的三角形法则计算用
③连接ND构建平行四边形ABND;然后利用平行四边形的性质、平面向量的几何意义以及向量的三角形法则计算用
点评:本题考查了平面向量.解答该题时,需熟记向量的三角形法则和向量的平行四边形法则.
练习册系列答案
相关题目
| A、3cm | B、7cm | C、3cm或7cm | D、2cm |