题目内容
如图,△ABC中,AD⊥BC,AE平分∠BAC,∠B=40°,∠C=60°,求∠DAE的度数.
解:∵∠B=40°,∠C=60°,
∴∠BAC=180°-∠B-∠C=80°,
∵AE平分∠BAC,
∴∠BAE=
∠BAC=40°,
∴∠AEC=∠B+∠BAE=80°,
∵AD⊥BC,
∴∠ADE=90°,
∴∠DAE=180°-∠ADE-∠AED=10°.
答:∠DAE的度数是10°.
分析:根据三角形的内角和定理求出∠BAC的度数,根据角平分线的定义求出∠BAE的度数,根据三角形的外角性质得到∠AEC的度数,再根据三角形的内角和定理即可求出答案.
点评:本题主要考查了三角形的内角和定理,三角形的外角性质,三角形的角平分线,垂直的定义等知识点,能熟练地运用这些性质进行计算是解此题的关键.
∴∠BAC=180°-∠B-∠C=80°,
∵AE平分∠BAC,
∴∠BAE=
∴∠AEC=∠B+∠BAE=80°,
∵AD⊥BC,
∴∠ADE=90°,
∴∠DAE=180°-∠ADE-∠AED=10°.
答:∠DAE的度数是10°.
分析:根据三角形的内角和定理求出∠BAC的度数,根据角平分线的定义求出∠BAE的度数,根据三角形的外角性质得到∠AEC的度数,再根据三角形的内角和定理即可求出答案.
点评:本题主要考查了三角形的内角和定理,三角形的外角性质,三角形的角平分线,垂直的定义等知识点,能熟练地运用这些性质进行计算是解此题的关键.
练习册系列答案
相关题目