题目内容

已知:如图,在△ABC中,点D是BC的中点,过点D作直线交AB,CA的延长线于点E,F.当BE=CF时,求证:AE=AF.

见解析

【解析】

试题分析:过点B作BG∥FC,延长FD交BG于点G,证明△BDG和△CDF全等,得到BG=CF,然后根据BE=CF,从而说明△BEG为等腰三角形,即∠G=∠BEG,根据平行可得∠G=∠F,根据对顶角可得∠BEG=∠AEF,根据等式的性质可得∠F=AEF,从而得出AE=AF.

试题解析:过点B作BG∥FC,延长FD交BG于点G.∴

∵点D是BC的中点,∴BD=CD.

在△BDG和△CDF中,

∴ △BDG≌△CDF.∴BG=CF.∵BE=CF, ∴BE=BG.

∴∠G=∠BEG ∵∠BEG=∠AEF ∴∠G=∠AEF ∴∠F=∠AEF ∴AE=AF

考点:三角形全等的证明、等腰三角形的性质.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网