题目内容
(2004•安徽)如图,AD⊥CD,AB=10,BC=20,∠A=∠C=30°,求AD、CD的长.
如图,在△ABC中,AB=AC=10,以AB为直径的⊙O分别交AC、BC于点D、E,点F在AC的延长线上,且∠CBF=∠A,tan∠CBF=,则CF的长为( )
A. B. C. D.
一个不透明的口袋中装有2个红球(记为红球1、红球2),1个白球、1个黑球,这些球除颜色外都相同,将球搅匀.
(1)从中任意摸出1个球,恰好摸到红球的概率是
(2)先从中任意摸出一个球,再从余下的3个球中任意摸出1个球,请用列举法(画树状图或列表),求两次都摸到红球的概率.
如图,AB为⊙O的直径,∠ABD=38°,则∠DCB=( )
A.52° B.56° C.60° D.64°
(2015秋•深圳校级月考)如图,在直角坐标系中放入一个边长OC=8,CB=10的矩形纸片ABCO.将纸片翻折后,点B恰好落在x轴上,记为B′,折痕为CE
(1)求B′点的坐标;
(2)求折痕CE所在直线的解析式.
(2015秋•深圳校级月考)如果(a2+b2+1)(a2+b2﹣1)=63,那么a2+b2的值为 .
(2007•南充)一艘轮船由海平面上A地出发向南偏西40°的方向行驶40海里到达B地,再由B地向北偏西20°的方向行驶40海里到达C地,则A、C两地相距( )
A.30海里 B.40海里 C.50海里 D.60海里
已知:二次函数y=﹣x2+bx+c的图象过点(﹣1,﹣8),(0,﹣3).
(1)求此二次函数的表达式,并用配方法将其化为y=a(x﹣h)2+k的形式;
(2)画出此函数图象的示意图.
如图,将边长为2的正六边形A1A2A3A4A5A6在直线l上由图1的位置按顺时针方向向右作无滑动滚动.
(1)该正六边形的每一个内角的度数是 ,每一个外角的度数为 ;
(2)求它的对角线A1A5、A2A4、A1A3的长;
(3)直接写出点A1从图1滚动到图2的位置时,顶点A1所经过的路径长.