题目内容
两个相似三角形的面积之比为3:4,那么它们对应高线的比为
- A.
:4 - B.3:4
- C.
:2 - D.2:

C
分析:根据相似三角形的面积比等于相似比的平方,对应高线的比等于相似比解答.
解答:∵两个相似三角形的面积之比为3:4,
∴相似比是
:2,
又∵相似三角形对应高的比等于相似比,
∴对应高线的比为
:2.
故选C.
点评:本题考查对相似三角形性质的理解,相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.
分析:根据相似三角形的面积比等于相似比的平方,对应高线的比等于相似比解答.
解答:∵两个相似三角形的面积之比为3:4,
∴相似比是
又∵相似三角形对应高的比等于相似比,
∴对应高线的比为
故选C.
点评:本题考查对相似三角形性质的理解,相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.
练习册系列答案
相关题目