题目内容


如图,在△ABC中,D、E分别是边AC、BC上的点,若△ADB≌△EDB≌△EDC,则∠C的度数为(     )

A.15°   B.20°    C.25°   D.30°

 


D【考点】全等三角形的性质.

【分析】根据全等三角形对应角相等,∠A=∠BED=∠CED,∠ABD=∠EBD=∠C,根据∠BED+∠CED=180°,可以得到∠A=∠BED=∠CED=90°,再利用三角形的内角和定理求解即可.

【解答】解:∵△ADB≌△EDB≌△EDC

∴∠A=∠BED=∠CED,∠ABD=∠EBD=∠C

∵∠BED+∠CED=180°

∴∠A=∠BED=∠CED=90°

在△ABC中,∠C+2∠C+90°=180°

∴∠C=30°

故选D.

【点评】本题主要考查全等三角形对应角相等的性质,做题时求出∠A=∠BED=∠CED=90°是正确解本题的突破口.

 

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网