题目内容
(1)计算:4sin60°+| 3﹣ |﹣()﹣1+(π﹣2017)0.
(2)先化简,再求值:(﹣1)÷,其中x的值从不等式组的整数解中任选一个.
下图右边是一个三棱柱,它的正投影是下图中的_____(填序号).
如图,某日的钱塘江观潮信息如图:
按上述信息,小红将“交叉潮”形成后潮头与乙地之间的距离s(千米)与时间t(分钟)的函数关系用图3表示,其中:“11:40时甲地‘交叉潮’的潮头离乙地12千米”记为点A(0,12),点B坐标为(m,0),曲线BC可用二次函数s=t2+bt+c(b,c是常数)刻画.
(1)求m的值,并求出潮头从甲地到乙地的速度;
(2)11:59时,小红骑单车从乙地出发,沿江边公路以0.48千米/分的速度往甲地方向去看潮,问她几分钟后与潮头相遇?
(3)相遇后,小红立即调转车头,沿江边公路按潮头速度与潮头并行,但潮头过乙地后均匀加速,而单车最高速度为0.48千米/分,小红逐渐落后.问小红与潮头相遇到落后潮头1.8千米共需多长时间?(潮水加速阶段速度v=v0+(t﹣30),v0是加速前的速度).
为了增强居民的节水意识,从2007年1月1日起,临汾城区水价执行“阶梯式”计费,每月应交水费y(元)与用水量x(吨)之间的函数关系如图所示.若某用户5月份交水费18.05元,则该用户该月用水( )
A. 8.5吨 B. 9吨 C. 9.5吨 D. 10吨
如图1,在锐角△ABC中,∠ABC=45°,高线AD、BE相交于点F.
(1)判断BF与AC的数量关系并说明理由;
(2)如图2,将△ACD沿线段AD对折,点C落在BD上的点M,AM与BE相交于点N,当DE∥AM时,判断NE与AC的数量关系并说明理由.
瑞瑞有一个小正方体,6个面上分别画有平行四边形、圆、等腰梯形、菱形、等边三角形和直角梯形这6个图形.抛掷这个正方体一次,向上一面的图形既是轴对称图形,又是中心对称图形的概率是_____.
如图,一个梯子AB长2.5米,顶端A靠在墙AC上,这时梯子下端B与墙角C距离为1.5米,梯子滑动后停在DE的位置上,测得BD长为0.5米,则梯子顶端A下落了( )米.
A. 0.5 B. 1 C. 1.5 D. 2
在矩形ABCD中,AB=2,BC=3,若点E为边CD的中点,连接AE,过点B作BF⊥AE于点F,则BF长为___________.
某种电子元件的面积大约为0.00000069平方毫米,将0.00000069这个数用科学记数法表示正确的是( )
A. 0.69×10﹣6 B. 6.9×10﹣7 C. 69×10﹣8 D. 6.9×107