题目内容
分解因式a3-9a= .
(12分)在直角坐标系中,已知点P是反比例函数(>0)图象上一个动点,以P为圆心的圆始终与轴相切,设切点为A.
(1)如图1,⊙P运动到与轴相切,设切点为K,试判断四边形OKPA的形状,并说明理由.
(2)如图2,⊙P运动到与轴相交,设交点为B,C.当四边形ABCP是菱形时:
①求出点A,B,C的坐标.
②在过A,B,C三点的抛物线上是否存在点M,使△MBP的面积是菱形ABCP面积的.若存在,试求出所有满足条件的M点的坐标,若不存在,试说明理由.
在综合实践课上,小明同学设计了如图测河塘宽AB的方案:在河塘外选一点O,连结AO,BO,测得m,m,延长AO,BO分别到D,C两点,使m,m,又测得m,则河塘宽AB= m.
(本题满分10分)快、慢两车分别从相距480km的甲、乙两地同时出发,匀速行驶,先相向而行,途中慢车因故停留了1小时,然后继续以原速驶向甲地,到达甲地后即停止行驶;快车到达乙地后,立即按原路原速返回甲地(调头时间忽略不计).如图是快、慢两车距乙地路程y(km)与所用时间x(h)之间的函数图像,结合图像解答下列问题:
(1)求慢车的行驶速度和a的值.
(2)快车与慢车第一次相遇时,距离甲地的路程是多少千米?
(3)两车出发后几小时相距的路程为200千米?
如图,等边△ABC中,AB=4,O为三角形中心,⊙O的直径为1,现将⊙O沿某一方向平移,当它与等边△ABC的某条边相切时停止平移,记平移的距离为d ,则d的取值范围是 .
一件服装标价200元,若以6折销售,仍可获利20%,则这件服装的进价是( )
A.100元 B.105元 C.108元 D.118元
(本题12分) 如图,已知直线与轴交于点,与轴交于点,抛物线与直线交于、两点,与轴交于、两点,且点坐标为(1,0).
(1)求该抛物线的解析式;
(2)动点在轴上移动,当△是直角三角形时,直接写出点的坐标;
(3)在抛物线的对称轴上找一点,使||的值最大,求出点的坐标.
如图,在平行四边形ABCD中,E是CD的中点,AD、BE的延长线交于点F,DF=3,DE=2,则平行四边形ABCD的周长为( )
A.5 B.12 C.14 D.16
如图,正方形ABCD的边长为4,E、F分别是BC、CD上的两个动点,且AE⊥EF,则AF的最小值是 。