题目内容
在下列调查中,适宜采用普查的是( )
A. 了解七(1)班学生校服的尺码情况
B. 了解我区中学生视力情况
C. 检测一批电灯泡的使用寿命
D. 调查中央电视台《星光大道》栏目的收视率
如图1,我们把对角线互相垂直的四边形叫做垂美四边形.
(l)概念理【解析】如图2,在四边形ABCD中,AB=AD,CB=CD,问四边形ABCD是垂美四边形吗?请说明理由.
(2)性质探宄:试探索垂美四边形ABCD两组对边AB,CD与BC,AD之间的数量关系.
猜想结论:(要求用文字语言叙述)
写出证明过程(先画出图形,写出已知、求证)
(3)问题解决:如图3,分别以Rt△ACB的直角边AC和斜边AB为边向外作正方形ACFG和正方形ABDE,连接CE,BG,GE,已知AC=4,AB=5,求GE长.
如图①,从边长为a的正方形中剪去一个边长为b的小正方形,然后将剩余部分剪拼成一个长方形(如图②),则上述操作所能验证的公式是( )
A. (a+b)(a﹣b)=a2﹣b2 B. (a﹣b)2=a2﹣2ab+b2
C. (a+b)2=a2+2ab+b2 D. a2+ab=a(a+b)
若和都是最简二次根式,则mn=__.
计算: =____.
国家推行“节能减排,低碳经济”政策后,某环保节能设备生产企业的产品供不应求.若该企业的某种环保设备每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于90万元.已知这种设备的月产量x(套)与每套的售价(万元)之间满足关系式,月产量x(套)与生产总成本(万元)存在如图所示的函数关系.
(1)求月产量x的范围;
(2)如果想要每月利润为1750万元,那么当月产量应为多少套?
(3)如果每月获利润不低于1900万元,当月产量x(套)为多少时,生产总成本最低?并求出此时的最低成本.
在平面坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C,延长C1B1交x轴于点A2,作正方形A2B2C2C1,………按这样的规律进行下去,第2012个正方形的面积为_____________
已知:如图,平面直角坐标系中,矩形OABC的顶点A(6,0)、B(6,4),D是BC的中点.动点P从O点出发,以每秒1个单位的速度,沿着OA、AB、BD运动.设P点运动的时间为t秒(0<t<13).
(1)写出△POD的面积S与t之间的函数关系式,并求出△POD的面积等于9时点P的坐标;
(2)当点P在OA上运动时,连结CP.问:是否存在某一时刻t,当CP绕点P旋转时,点C能恰好落到AB的中点M处?若存在,请求出t的值并判断此时△CPM的形状;若不存在,请说明理由;
(3)当点P在AB上运动时,试探索当PO+PD的长最短时的直线PD的表达式。
分解因式:xy3﹣9xy=____________.