题目内容

有一种传染性疾病,蔓延速度极快,据统计,在人群密集的某城市里,通常情况下,每天一人能传染给若干人,现有一人患了这种疾病,两天后共有121人患上此病,求每天一人传染了几人?

解:设每天一人传染了x人,则依题意得
1+x+(1+x)×x=121,
(1+x)2=121,
∵1+x>0,
∴1+x=11,
x=10.
答:每天一人传染了10人.
分析:第一天患病的人数为1+1×传播的人数;第一天患病人数将成为第二天的传染源,第二天患病的人数为第一天患病的人数×传播的人数,等量关系为:第一天患病的人数+第二天患病的人数=121.
点评:考查一元二次方程的应用;得到两天患病人数的等量关系是解决本题的关键;易错点是理解第一天患病的总人数是第二天的传染源.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网