题目内容
1.分析 连接AD,由于△ABC是等腰三角形,点D是BC边的中点,故AD⊥BC,再根据三角形的面积公式求出AD的长,再根据EF是线段AB的垂直平分线可知,点B关于直线EF的对称点为点A,故AD的长为BM+MD的最小值,由此即可得出结论.
解答
解:连接AD,
∵△ABC是等腰三角形,点D是BC边的中点,
∴AD⊥BC,
∴S△ABC=$\frac{1}{2}$BC•AD=$\frac{1}{2}$×4×AD=12,解得AD=6cm,
∵EF是线段AB的垂直平分线,
∴点B关于直线EF的对称点为点A,
∴AD的长为BM+MD的最小值,
∴BM+DM最小值为6cm,
故答案为:6cm.
点评 本题考查的是轴对称-最短路线问题,熟知等腰三角形三线合一的性质是解答此题的关键.
练习册系列答案
相关题目
16.将抛物线y=-3x2+2向左平移1个单位,再向下平移3个单位后所得到的抛物线为( )
| A. | y=-3(x-1)2-3 | B. | y=-3(x-1)2-1 | C. | y=-3(x=1)2-3 | D. | y=-3(x+1)2-1 |