题目内容
20.解方程(1)$\left\{\begin{array}{l}{x+2y=10}\\{y=2x}\end{array}\right.$
(2)$\left\{\begin{array}{l}{3x+y=4}\\{2x-y=1}\end{array}\right.$
(3)$\left\{\begin{array}{l}{x+3y=-1}\\{3x-2y=8}\end{array}\right.$
(4)$\left\{\begin{array}{l}{2x-y=-4}\\{4x-5y=-23}\end{array}\right.$.
分析 (1)方程组利用代入消元法求出解即可;
(2)方程组利用加减消元法求出解即可;
(3)方程组利用加减消元法求出解即可;
(4)方程组利用加减消元法求出解即可.
解答 解:(1)$\left\{\begin{array}{l}{x+2y=10①}\\{y=2x②}\end{array}\right.$,
把②代入①得:x+4x=10,即x=2,
把x=2代入②得:y=4,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=4}\end{array}\right.$;
(2)$\left\{\begin{array}{l}{3x+y=4①}\\{2x-y=1②}\end{array}\right.$,
①+②得:5x=5,即x=1,
把x=1代入②得:y=1,
则方程组的解为$\left\{\begin{array}{l}{x=1}\\{y=1}\end{array}\right.$;
(3)$\left\{\begin{array}{l}{x+3y=-1①}\\{3x-2y=8②}\end{array}\right.$,
①×3-②得:11y=-11,即y=-1,
把y=-1代入①得:x=2,
则方程组的解为$\left\{\begin{array}{l}{x=2}\\{y=-1}\end{array}\right.$;
(4)$\left\{\begin{array}{l}{2x-y=-4①}\\{4x-5y=-23②}\end{array}\right.$,
①×5-②得:6x=3,即x=$\frac{1}{2}$,
把x=$\frac{1}{2}$代入①得:y=5,
则方程组的解为$\left\{\begin{array}{l}{x=\frac{1}{2}}\\{y=5}\end{array}\right.$.
点评 此题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法.
| A. | 1cm 1cm 2cm | B. | 2cm 2 cm 5cn | C. | 3cm 3cm 5cm | D. | 3cm 4cm 5cm |
| A. | (1,-2) | B. | (-2,1) | C. | (0,-3) | D. | (1,2) |
| A. | $\left\{\begin{array}{l}x=-2\\ y=-3\end{array}\right.$ | B. | $\left\{\begin{array}{l}x=-3\\ y=-2\end{array}\right.$ | C. | $\left\{\begin{array}{l}x=0\\ y=-3\end{array}\right.$ | D. | $\left\{\begin{array}{l}x=0\\ y=-2\end{array}\right.$ |