题目内容
已知?ABCD的周长为32,AB=4,则BC=( )
A. 4 B. 12 C. 24 D. 28
若正方形的边长为6,则其外接圆半径与内切圆半径的大小分别为( )
A. 6,3 B. 6,3 C. 3,3 D. 6,3
如果两个角的两条边互相平行,那么这两个角( )
A. 一定相等 B. 一定互补 C. 相等或互补 D. 可能既不相等也不互补
如图,在函数 (x>0)的图象上有点P1、P2、P3…、Pn、Pn+1,点P1的横坐标为2,且后面每个点的横坐标与它前面相邻点的横坐标的差都是2,过点P1、P2、P3…、Pn、Pn+1分别作x轴、y轴的垂线段,构成若干个矩形,如图所示,将图中阴影部分的面积从左至右依次记为S1、S2、S3…、Sn,则S1=__,Sn=__.(用含n的代数式表示)
如图,在菱形ABCD中,E,F分别在AB,CD上,且BE=DF,EF与BD相交于点O,连结AO.若∠CBD=35°,则∠DAO的度数为( )
A. 35° B. 55° C. 65° D. 75°
如图,边长为8的正方形OABC的两边在坐标轴上,以点C为顶点的抛物线经过点A,点P是抛物线上点A,C间的一个动点(含端点),过点P作PF⊥BC于点F,点D、E的坐标分别为(0,6),(﹣4,0),连接PD、PE、DE.
(1)求出抛物线的解析式;
(2)小明探究点P的位置发现:当点P与点A或点C重合时,PD与PF的差为定值,进而猜想:对于任意一点P,PD与PF的差为定值,请你判断该猜想是否正确,请说明理由;
(3)小明进一步探究得出结论:若将“使△PDE的面积为整数”的点P记作“好点”,则存在多个“好点”,且使△PDE的周长最小的点P也是一个“好点”.请求出△PDE周长最小时“好点”的坐标,并直接写出所有“好点”的个数.
甲、乙、丙、丁四名同学进行一次乒乓球单打比赛,要从中选两位同学打第一场比赛.
(1)请用树状图或列表法求恰好选中甲、乙两位同学的概率;
(2)请利用若干个除颜色外其余都相同的乒乓球,设计一个摸球的实验(至少摸两次),
并根据该实验写出一个发生概率与(1)所求概率相同的事件.
已知:如图,等腰直角三角形ABC中,∠A=90°,D为BC中点,E、F分别为AB、AC上的点,且满足EA=CF.链接AD,求证:DE=DF.
张师傅驾车从甲地到乙地,两地相距500千米,汽车出发前油箱有油25升,途中加油若干升,加油前、后汽车都以100千米/时的速度匀速行驶,已知油箱中剩余油量y(升)与行驶时间t(时)之间的关系如图所示.以下说法错误的是( )
A. 加油前油箱中剩余油量y(升)与行驶时间t(时)之间的函数关系式是y=-8t+25
B. 途中加油21升
C. 汽车加油后还可行驶4小时
D. 汽车到达乙地时油箱中还余油6升