题目内容
小红把一枚硬币抛掷10次,结果有4次正面朝上,那么( )
A. 正面朝上的频数是0.4 B. 反面朝上的频数是6
C. 正面朝上的频率是4 D. 反面朝上的频率是6
解方程:
【答案】无解
【解析】试题分析:把方程的两边都乘以(x+2)(x-2),化为整式方程求解,求出未知数的值后要验根.
【解析】
(x-2)2-(x+2)2=16,
x2-4x+4+x2+4x+4=16,
x2=4,
∴x=±2.
检验:当x=±2时,(x+2)(x-2)=0,所以原方程无解.
故答案为:无解.
【题型】解答题【结束】22
如图,四边形ABCD中AB∥CD,对角线AC,BD相交于O,点E,F分别为BD上两点,且BE=DF,∠AEF=∠CFB.
(1)求证:四边形ABCD是平行四边形;
(2)若AC=2OE,试判断四边形AECF的形状,并说明理由.
一个多边形截去一个角后,形成的多边形的内角和为1260°,则原多边形的边数为( )
A. 9 B. 10 C. 8 D. 以上均有可能
在一个不透明的袋子中有四个完全相同的小球,分别标号为1,2,3,4.随机摸取一个小球不放回,再随机摸取一个小球,两次摸出的小球的标号的和等于4的概率是________.
在围棋盒中有x颗白色棋子和y颗黑色棋子,从盒中随机取出一颗棋子,取得白色棋子的概率是,如再往盒中放进3颗黑色棋子,取得白色棋子的概率变为,则原来盒里有白色棋子( )
A. 1颗 B. 2颗 C. 3颗 D. 4颗
如图,在平面直角坐标系 中,函数的图象与直线交于点A(3,m).
(1)求k、m的值;
(2)已知点P(n,n)(n>0),过点P作平行于轴的直线,交直线y=x-2于点M,过点P作平行于y轴的直线,交函数 的图象于点N.
①当n=1时,判断线段PM与PN的数量关系,并说明理由;
②若PN≥PM,结合函数的图象,直接写出n的取值范围.
二次函数y=ax2+bx+c(a≠0)的部分图象如图所示,其顶点坐标为(1,n),且与x轴的一个交点在(3,0)和(4,0)之间,则下列结论:
①ac
②a﹣b+c>0;
③当时,y随x的增大而增大
若(﹣,y1),(,y2)是抛物线上的两点,则y1y2;
④一元二次方程ax2+bx+c=n﹣1有两个不相等的实数根.
其中正确结论的个数是( )
A. 1 B. 2 C. 3 D. 4
已知一次函数y=kx+b的图象经过点(-1,-5),且与正比例函数y=x的图象相交于点(2,a),求:
(1)a的值.
(2)k,b的值.
(3)这两个函数图象与x轴所围成的三角形的面积。
下列银行标志图中,既是轴对称图形,又是中心对称图形的是( )
A. B. C. D.