题目内容
解方程:
(1) (2)
解不等式组:
阅读材料:
材料1、若一元二次方程ax2+bx+c=0(a≠0)的两根为x1,x2,则x1+x2=,x1x2=.
材料2、已知实数m、n满足m2﹣m﹣1=0,n2﹣n﹣1=0,且m≠n,求的值.
【解析】由题知m、n是方程x2﹣x﹣1=0的两个不相等的实数根,根据材料1得
m+n=1,mn=﹣1
∴
根据上述材料解决下面问题;
(1)一元二次方程2x2+3x﹣1=0的两根为x1、x2,则x1+x2= ,x1x2= .
(2)已知实数m、n满足2m2﹣2m﹣1=0,2n2﹣2n﹣1=0,且m≠n,求m2n+mn2的值.
(3)已知实数p、q满足p2=3p+2,2q2=3q+1,且p≠2q,求p2+4q2的值.
将方程x2﹣6x﹣5=0化为(x+m)2=n的形式,则m,n的值分别是( )
A.3和5 B.﹣3和5 C.﹣3和14 D.3和14
观察下列等式:
12×231=132×21, 14×451=154×41, 32×253=352×23, 34×473=374×43,45×594=495×54,……
以上每个等式中两边数字是分别对称的,且每个等式中组成两位数与三位数的数字之间具有相同规律,我们称这类等式为“数字对称等式”.
(1)根据上述各式反映的规律填空,使式子成为“数字对称等式”:
①35× = ×53; ② ×682=286× .
(2)设数字对称式左边的两位数的十位数字为m,个位数字为n,且2≤m+n≤9.用含m,n的代数式表示数字对称式左边的两位数与三位数的乘积P,并求出P 能被110整除时mn的值.(其中乘法公式))
在平面直角坐标系中,点关于y轴的对称点是___________ .
如图,宽为60cm的矩形图案由10个完全一样的小长方形拼成,则其中一个小长方形的周长为( )
A. 60cm B. 120cm C. 312cm D. 576cm
在美丽乡村建设中,某县通过政府投入进行村级道路硬化和道路拓宽改造.
(1) 原计划是今年1至5月,村级道路硬化和道路拓宽的里程数共50千米,其中道路硬化的里程数至少是道路拓宽的里程数的4倍,那么,原计划今年1至5月,道路硬化和里程数至少是多少千米?
(2) 到今年5月底,道路硬化和道路拓宽的里程数刚好按原计划完成,且道路硬化的里程数正好是原计划的最小值.2017年通过政府投入780万元进行村级道路硬化和道路拓宽的里程数共45千米,每千米的道路硬化和道路拓宽的经费之比为1 : 2,且里程数之比为2 : 1,为加快美丽乡村建设,政府决定加大投入.经测算:从今年6月起至年底,如果政府投入经费在2017年的基础上增加10a%(a>0),并全部用于道路硬化和道路拓宽,而每千米道路硬化、道路拓宽的费用也在2017年的基础上分别增加a%,5a%,那么道路硬化和道路拓宽的里程数将会在今年1至5月的基础上分别增加5a%,8a%,求a的值.