题目内容
(8分)如图,抛物线经过点A(0,3)、B(-1,0),请解答下列问题:
(1)求抛物线的解析式;
(2)抛物线的顶点为D,与轴的另一交点为C,对称轴交轴于点E,连接BD,求
如图,AB、CD为两个建筑物,建筑物AB的高度为60米,从建筑物AB的顶点A点测得建筑物CD的顶点C点的俯角∠EAC为30°,测得建筑物CD的底部D点的俯角∠EAD为45°.
(1)求两建筑物底部之间水平距离BD的长度;
(2)求建筑物CD的高度(结果保留根号).
若代数式有意义,则的取值范围是 ( )
A.>3且5 B. C. D.
已知一个半径为4的扇形的面积为,则此扇形的弧长为 .
如图,AC是旗杆AB的一根拉线,测得BC=6米,∠ACB=50°,则拉线AC的长为( )
A.米 B.6·cos50°米 C.米 D.米
(6分)你喜欢转盘游戏吗?如图,图中的两个转盘分别被均匀地分成5个和4个扇形,每个扇形上都标有数字,同时自由转动两个转盘,转盘停止后,
(1)请用列表法或树形图分析指针都落在奇数上的概率是多少?
(2)甲、乙两人约定:若转到的数字点数之和为奇数,则甲胜;反之,则乙胜.你认为这个游戏是否公平?说明你的理由.
如图,是二次函数图像的一部分,其对称轴为直线,若其与轴的一个交点为(3,0),则由图象可知,不等式的解集为 ;
某校九年级一班的暑假活动安排中,有一项是小制作评比.作品上交时限为8月1日至30日,班委会把同学们交来的作品按时间顺序每5天组成一组,对每一组的件数进行统计,绘制成如图所示的统计图.已知从左到右各矩形的高度比为2:3:4:6:1.第三组的频数是12.请你回答:
(1)本次活动共有 件作品参赛;
(2)若将各组所占百分比绘制成扇形统计图,那么第四组对应的扇形的圆心角是 度。
(3)本次活动共评出2个一等奖和3个二等奖及三等奖、优秀奖若干名,对一、二等奖作品进行编号并制作成背面完全一致的卡片,背面朝上的放置,随机抽出两张卡片,抽到的作品恰好一个是一等奖,一个是二等奖的概率是多少?
把a3-4a分解因式正确的是
A.a(a2-4) B.a(a-2)2
C.a(a+2)(a-2) D.a(a+4)(a-4).