题目内容
| AC |
152°
152°
.分析:连接CO,由圆周角定理可求∠BOC,由等腰三角形的性质求∠BCO,可得∠OCA,利用互余关系求∠COD,则∠BOD=∠BOC+∠COD.
解答:
解:连接CO,∠BOC=2∠BAC=2×34°=68°,
在△BOC中,
∵BO=CO,
∴∠BCO=(180°-68°)÷2=56°,
∴∠OCA=∠BCA-56°=62°-56°=6°,
又OD⊥AC,
∴∠COD=90°-∠OCA=90°-6°=84°,
∴∠BOD=∠BOC+∠COD=68°+84°=152°.
故答案为:152°.
在△BOC中,
∵BO=CO,
∴∠BCO=(180°-68°)÷2=56°,
∴∠OCA=∠BCA-56°=62°-56°=6°,
又OD⊥AC,
∴∠COD=90°-∠OCA=90°-6°=84°,
∴∠BOD=∠BOC+∠COD=68°+84°=152°.
故答案为:152°.
点评:本题考查了圆周角定理及三角形内角和定理,解答此题的关键是将圆周角的度数转化为圆心角的度数,利用互余关系,角的和差关系求解.
练习册系列答案
相关题目
| AC |
| A、132 | B、144 |
| C、156 | D、168 |