题目内容
如图,在四边形ABCD中,对角线AC,BD相交于点E,∠CBD=90°,BC=4,BE=ED=3,AC=10,则四边形ABCD的面积为( )
![]()
![]()
A.6 B.12 C.20 D.24
D【考点】平行四边形的判定与性质;全等三角形的判定与性质;勾股定理.
【分析】根据勾股定理,可得EC的长,根据平行四边形的判定,可得四边形ABCD的形状,根据平行四边形的面积公式,可得答案.
【解答】解:在Rt△BCE中,由勾股定理,得
CE=![]()
=![]()
=5.
∵BE=DE=3,AE=CE=5,
∴四边形ABCD是平行四边形.
四边形ABCD的面积为BC•BD=4×(3+3)=24,
故选:D.
练习册系列答案
相关题目
如图,点A在直线y=x上,AB⊥x轴于点B,点C在线段AB上,以AC为边作正方形ACDE,点D恰好在反比例函数y=![]()
(k为常数,k≠0)第一象限的图象上,连接AD.若OA2﹣AD2=20,则k的值为 .
![]()
![]()