题目内容
已知ax2+bx+1与2x2-3x+1的积不含x3和x项,试计算下面代数式的值.
+
+
+
+…+
.
| 1 |
| (a-1)(b-1) |
| 1 |
| ab |
| 1 |
| (a+1)(b+1) |
| 1 |
| (a+2)(b+2) |
| 1 |
| (a+2010)(b+2010) |
(ax2+bx+1)•(2x2-3x+1),
=2ax4-3ax3+ax2+2bx3-3bx2+bx+2x2-3x+1,
=2ax4+(-3a+2b)x3+(a-3b+2)x2+(b-3)x+1,
∵不含x3和x项,
∴b-3=0,-3a+2b=0,
∴b=3,a=2,
把a=2,b=3代入得:
+
+
+
+…+
=
+
+
+
+…+
=
-
+
-
+
-
+
-
+…+
-
=1-
=
.
=2ax4-3ax3+ax2+2bx3-3bx2+bx+2x2-3x+1,
=2ax4+(-3a+2b)x3+(a-3b+2)x2+(b-3)x+1,
∵不含x3和x项,
∴b-3=0,-3a+2b=0,
∴b=3,a=2,
把a=2,b=3代入得:
| 1 |
| (a-1)(b-1) |
| 1 |
| ab |
| 1 |
| (a+1)(b+1) |
| 1 |
| (a+2)(b+2) |
| 1 |
| (a+2010)(b+2010) |
=
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| 3×4 |
| 1 |
| 4×5 |
| 1 |
| 2012×2013 |
=
| 1 |
| 1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 5 |
| 1 |
| 2012 |
| 1 |
| 2013 |
=1-
| 1 |
| 2013 |
=
| 2012 |
| 2013 |
练习册系列答案
相关题目