题目内容
【题目】在一个不透明的袋子中装有除颜色外其余均相同的m个小球,其中8个黑球,从袋中随机摸出一球,记下其颜色,这称为一次摸球实验,之后把它放回袋中,搅匀后,再继续摸出一球,记下其颜色,以下是利用计算机模拟的摸球试验次数与摸出黑球次数的列表:
摸球试验次数 | 100 | 1000 | 5000 | 10000 | 50000 | 100000 |
摸出黑球次数 | 49 | 425 | 1722 | 3208 | 16698 | 33329 |
根据列表,可以估计出m的值是( )
A.8B.16C.24D.32
【答案】C
【解析】
利用大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率求解即可.
解:∵通过大量重复试验后发现,摸到黑球的频率稳定于
,
由题意得:
,
解得:m=24,
故选:C.
练习册系列答案
相关题目
【题目】某班级组织了“我和我的祖国”演讲比赛,甲、乙两队各有10人参加本次比赛,成绩如下(10分制)
甲 | 10 | 8 | 7 | 9 | 8 | 10 | 10 | 9 | 10 | 9 |
乙 | 7 | 8 | 9 | 7 | 10 | 10 | 9 | 10 | 10 | 10 |
(1)甲队成绩的众数是 分,乙队成绩的中位数是 分.
(2)计算乙队成绩的平均数和方差.
(3)已知甲队成绩的方差是1分2,则成绩较为整齐的是 队.
【题目】小颖、小明、小亮在解方程
时,解法各不相同,请你回答下列问题:
(1)简要分析一下三位同学的解法是否正确.如果正确,他运用了哪种解一元二次方程的方法;如果错误,错误的原因是什么?你是否从中体会到解一元二次方程的数学思想是什么?
(2)请你选择一种你熟练的方法尝试解一元二次方程
.
由方程 因此 所以这个数是0或3 | 方程
|
即 或 所以这个数是0或3. |