题目内容
如图,AB是⊙O的直径,BC交⊙O于点D,E是的中点,连接AE交BC于点F,∠ACB=2∠EAB.
(1)求证:AC是⊙O的切线;
(2)若cosC=,AC=6,求BF的长.
如图,在Rt△ABC中,∠ACB=90°AC= 6,BC = 2,点D是AB的中点,点P是线段AC上的动点,连结PB,PD ,将△BPD沿直线PD翻折,得到△PD与△APD 重叠部分的面积是△ABP的面积的 时,AP= _______.
已知抛物线y=ax2-2ax+c与y轴交于C点,与x轴交于A、B两点,点A的坐标是(-1,0),O是坐标原点,且OC=3OA.
(1)求抛物线的函数表达式;
(2)直接写出直线BC的函数表达式;
(3)如图1,D为y轴的负半轴上的一点,且OD=2,以OD为边作正方形ODEF.将正方形ODEF以每秒1个单位的速度沿x轴的正方向移动,在运动过程中,设正方形ODEF与△OBC重叠部分的面积为s,运动的时间为t秒(0<t≤2).
求:①s与t之间的函数关系式;
②在运动过程中,s是否存在最大值?如果存在,直接写出这个最大值;如果不存在,请说明理由.
(4)如图2,点P(1,k)在直线BC上,点M在x轴上,点N在抛物线上,是否存在以A、M、N、P为顶点的平行四边形?若存在,请直接写出M点坐标;若不存在,请说明理由.
函数中,自变量x的取值范围是 .
如图放置的几何体的左视图是( )
如图,点G是△ABC的重心,CG的延长线交AB于点D,GA=10,GC=8,GB=6,将△ADG绕点D顺时针方向旋转180°得到△BDE,则△EBC的面 积为 .
用同样大小的黑色棋子按如图所示的规律摆放,则第100个图中有棋子 ( )
A.300枚 B.301枚 C.303枚 D.304枚
计算:
-2的绝对值是( )
A.2 B.-2 C.0 D.