题目内容

一次函数y=kx+k过点(1,4),且分别与x轴、y轴交于A、B点,点P(a,0)在x轴精英家教网正半轴上运动,点Q(0,b)在y轴正半轴上运动,且PQ⊥AB.
(1)求k的值,并在直角坐标系中画出一次函数的图象;
(2)求a、b满足的等量关系式;
(3)若△APQ是等腰三角形,求△APQ的面积.
分析:(1)由已知可得到其一次函数的解析式,从而求得A、B的坐标,据此即可画出一次函数的图象;
(2)根据已知可证明Rt△ABO∽Rt△QPO,相似三角形的对应边成比例,从而可求得a、b满足的等量关系式;
(3)已知△APQ是等腰三角形而没有明确指出是哪两边相等,从而要分两种情况进行分析,分别是AQ=PQ或AP=PQ再根据面积公式即可求得△APQ的面积.
解答:解:(1)∵一次函数y=kx+k的图象经过点(1,4),
∴4=k×1+k,即k=2,∴y=2x+2,
当x=0时,y=2,当y=0时,x=-1,
即A(-1,0),B(0,2),精英家教网
如图,直线AB是一次函数y=2x+2的图象;

(2)∵PQ⊥AB
∴∠QPO=90°-∠BAO
又∵∠ABO=90°-∠BAO
∴∠ABO=∠QPO
∴Rt△ABO∽Rt△QPO
AO
QO
=
OB
OP
,即
1
b
=
2
a

∴a=2b;精英家教网

(3)由(2)知a=2b,∴AP=AO+OP=1+a=1+2b,
AQ2=OA2+OQ2=1+b2,PQ2=OP2+OQ2=a2+b2=(2b)2+b2=5b2
若AQ=PQ,即AQ2=PQ2,则1+b2=5b2,即b=
1
2
-
1
2
(舍去),
此时,AP=2,OQ=
1
2
,S△APQ=
1
2
×AP×OQ=
1
2
×2×
1
2
=
1
2
(平方单位),
若AP=PQ,则1+2b=
5
b,即b=2+
5
,此时AP=1+2b=5+2
5
,OQ=2+
5

S△APQ=
1
2
×AP×OQ=
1
2
×(5+2
5
)×(2+
5
)=10+
9
5
2
(平方单位),
若AQ=AP,则(a+1)2=1+b2,解得b=-
4
3
,因为点Q在y轴正半轴上运动,故舍去;
∴△APQ的面积为
1
2
平方单位或(10+
9
5
2
)平方单位.
点评:此题考查学生对一次函数的解析式,图象及等腰三角形的性质等知识点的综合运用能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网