题目内容

如图所示,把一张矩形纸片ABCD沿对角线BD折叠,已知AB=6、BC=8,则BF=________.


分析:根据折叠的性质我们可得出AB=ED,∠A=∠E=90°,又有一组对应角,因此就构成了全等三角形判定中的AAS的条件.两三角形就全等,从而设CF为x,解直角三角形ABF可得出答案.
解答:解:根据题意可得:AB=DE,∠A=∠E=90°,
又∵∠AFB=∠EFD,
∴△ABF≌△EDF(AAS).
∴AF=EF,
设BF=x,则AF=FE=8-x,
在Rt△AFB中,可得:BF2=AB2+AF2
即x2=62+(8-x)2
解得:x=
故答案为:
点评:本题考查翻折变换的知识,有一定的难度,注意判定两个三角形全等,先根据已知条件或求证的结论确定三角形,然后再根据三角形全等的判定方法,看缺什么条件,再去证什么条件.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网