题目内容
分析:根据切线的判定与性质进行分析即可.若BP与⊙O相切,则∠OPB=90°,又因为OB=2OP,可得∠B=30°,则∠BOP=60°;根据弧长公式求得弧AP长,除以速度,即可求得时间.
解答:解:连接OP;
∵当OP⊥PB时,BP与⊙O相切,
∵AB=OA,OA=OP,
∴OB=2OP,∠OPB=90°;
∴∠B=30°;
∴∠O=60°;
∵OA=3cm,
弧AP=
=π,
∵圆的周长为:6π,
∴点P运动的距离为π或6π-π=5π;
∴当t=1或5时,有BP与⊙O相切.
故选C.
∵当OP⊥PB时,BP与⊙O相切,
∵AB=OA,OA=OP,
∴OB=2OP,∠OPB=90°;
∴∠B=30°;
∴∠O=60°;
∵OA=3cm,
弧AP=
| 60•π•3 |
| 180 |
∵圆的周长为:6π,
∴点P运动的距离为π或6π-π=5π;
∴当t=1或5时,有BP与⊙O相切.
故选C.
点评:本题考查的是切线的性质及弧长公式,解答此题时要注意过圆外一点有两条直线与圆相切,不要漏解.
练习册系列答案
相关题目