题目内容
把抛物线y=2x2向左平移3个单位,再向上平移2个单位所得抛物线的解析式为( )
A.y=2(x+3)2+2 B.y=2(x﹣2)2+3
C.y=2(x+2)2+3 D.y=2(x﹣3)2+2
(2013•包头)计算(+2)+(﹣3)所得的结果是( )
A.1 B.﹣1 C.5 D.﹣5
(2015秋•重庆校级期中)如果x=﹣2是关于x的方程3a﹣2x=7的解,那么a的值是( )
A. B.a=1 C. D.
如图,点C,D是半圆O的三等分点,直径AB=4.连结AC交半径OD于E,则线段DE,CE以及围成的封闭图形(即阴影部分)的面积是 .
如果所在圆的半径为3cm,它所对圆心角的度数是120°,那么的长是( )cm.
A.6π B.3π C.2π D.π
某商场经营某种品牌的玩具,购进时的单价是30元,根据市场调查:在一段时间内,销售单价是40元时,销售量是600件,而销售单价每涨2元,就会少售出20件玩具.
(1)不妨设该种品牌玩具的销售单价为x元(x>40),请你分别用x的代数式来表示销售量y件和销售该品牌玩具获得利润ω元,并把结果填写在表格中:
(2)在(1)问条件下,若商场获得了10000元销售利润,求该玩具销售单价x应定为多少元?
(3)在(1)问条件下,若玩具厂规定该品牌玩具销售单价不低于44元,且商场要完成不少于400件的销售任务,求商场销售该品牌玩具获得的最大利润是多少元?
如图,∠ACB=∠ADC=90°,AB=5,AC=4,(AD>CD),若△ABC∽△ACD,则AD= .
(2015秋•九江期末)在四边形OABC中,CB∥OA,∠COA=90°,CB=3,OA=6,BA=3.分别以OA、OC边所在直线为x轴、y轴建立如图所示的平面直角坐标系.
(1)求点B的坐标;
(2)已知D、E分别为线段OC、OB上的点,OD=5,OE=2EB,直线DE交x轴于点F.求直线DE的解析式;
(3)点M在(2)中直线DE上,四边形ODMN是菱形,求N的坐标.
(2015秋•惠山区期末)方程2x2+4x﹣1=0的两根为x1,x2,则x1+x2= .