题目内容
如图,已知AF=BE,∠A=∠B,AC=BD.求证:∠F=∠E.
如图,在扇形AOB中,,,过点C作于点D,以CD为边向右作正方形CDEF,若,则阴影部分的面积是______结果保留.
已知中,,,,CD为AB边上中线,E是CB边上的一个动点.
Ⅰ求CD的长;
Ⅱ如图1,连接AE,交CD于点F,当AE平分时,求CE,CF的长;
Ⅲ如图2,连接DE,将沿DE翻折至,连接BG,直接写出和间的数量关系.
命题“关于x的一元二次方程必有实数解”是假命题则在下列选项中,可以作为反例的是
A. B. C. D.
问题情境:如图①,在直角三角形ABC中,∠BAC=,AD⊥BC于点D,可知:∠BAD=∠C(不需要证明);
(1)特例探究:如图②,∠MAN=90°,射线AE在这个角的内部,点B、C在∠MAN的边AM、AN上,且AB="AC," CF⊥AE于点F,BD⊥AE于点D.证明:△ABD≌△CAF;
(2)归纳证明:如图③,点B,C在∠MAN的边AM、AN上,点E,F在∠MAN内部的射线AD上,∠1、∠2分别是△ABE、△CAF的外角.已知AB=AC,∠1=∠2=∠BAC. 求证:△ABE≌△CAF;
(3)拓展应用:如图④,在△ABC中,AB=AC,AB>BC.点D在边BC上,CD=2BD,点E、F在线段AD上,∠1=∠2=∠BAC.若△ABC的面积为15,则△ACF与△BDE的面积之和为 .
如图所示的方格中,∠1+∠2+∠3=_____度.
如图,点A,D,C,E在同一条直线上,AB∥EF,AB=EF,∠B=∠F,AE=10,AC=7,则CD的长为( )
A. 5.5 B. 4 C. 4.5 D. 3
方程3x+20=4x-25的解为____.
某药品原价每盒元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒元,则该药品平均每次降价的百分率是______.