题目内容
(1)计算:
(2)化简: .
如图,在矩形中,P、R分别是BC和DC上的点,E、F分别是AP和RP的中点,当点P在BC上从点B向点C移动,而点R不动时,下列结论正确的是( )。
A. 线段EF的长逐渐增长 B. 线段EF的长逐渐减小
C. 线段EF的长始终不变 D. 线段EF的长与点P的位置有关
已知:如图①,在矩形ABCD中,AB=5,AD=,AE⊥BD,垂足是E.点F是点E关于AB的对称点,连接AF、BF.
(1)求AE和BE的长;
(2)若将△ABF沿着射线BD方向平移,平移中的△ABF为△A1B1F1设平移的距离为m(平移距离指点B沿BD方向所经过的线段长度).
①当点F分别平移到线段AB上时,求出m的值
②当点F分别平移到线段AD上时,当直接写出相应的m的值.
(3)如图②,将△ABF绕点B顺时针旋转一个角α(0°<α<180°),记旋转中的△ABF为△A′BF′,在旋转过程中,设A′F′所在的直线与直线AE交于点O,当∠A′BD=∠FAB时,请直接写出OB的长.
已知a﹣b=2,则代数式2a﹣2b﹣3的值是( )
A. 1 B. 2 C. 5 D. 7
如图,抛物线的图象过点C(0,1),顶点为Q(2,3),点D在x轴正半轴上,线段OD=OC.
(1)求抛物线的解析式;
(2)抛物线上是否存在点M,使得⊿CDM是以CD为直角边的直角三角形?若存在,请求出M点的坐标;若不存在,请说明理由.
(3)将直线CD绕点C逆时针方向旋转45°所得直线与抛物线相交于另一点E,,连接QE.若点P是线段QE上的动点,点F是线段OD上的动点,问:在P点和F点的移动过程中,△PCF的周长是否存在最小值?若存在,求出这个最小值,若不存在,请说明理由。
二次函数的图象如图所示,则反比例函数与一次函数在同一坐标系中的大致图象是( ).
A. B.
C. D.
二次函数的图像的顶点坐标是( )
A. (-1,8) B. (1,8) C. (-1,2) D. (1,-4)
以下说法中,正确的个数有( )
(1)三角形的内角平分线、中线、高都是线段;
(2)三角形的三条高一定都在三角形的内部;
(3)三角形的一条中线将此三角形分成两个面积相等的小三角形;
(4)三角形的3个内角中,至少有2个角是锐角.
A. 1 B. 2 C. 3 D. 4
如图,已知直线l与⊙O相离,OA⊥l于点A,交⊙O于点P,OA=5,AB与⊙O相切于点B,BP的延长线交直线l于点C.
(1)求证:AB=AC;
(2)若,求⊙O的半径.