题目内容

已知:如图,在正方形ABCD中,点E、F分别在BC和CD上,AE=AF.
(1)求证:BE=DF;
(2)连接AC交EF于点O,延长OC至点G,使OG=OA,连接EG、FG.判断四边形AEGF是什么特殊四边形?并证明你的结论.

【答案】分析:(1)根据正方形的性质得出∠D=∠B=90°,AB=AD,根据HL证出Rt△ABE≌Rt△ADF即可;
(2)根据Rt△ABE≌Rt△ADF,推出∠BAE=∠DAF,推出∠EAC=∠FAC,根据三线合一得出垂直平分EF,即可求出答案.
解答:证明:(1)∵正方形ABCD,
∴∠D=∠B=90°,AB=AD=BC=CD,
在Rt△ABE与Rt△ADF中,

∴Rt△ABE≌Rt△ADF(HL),
∴BE=DF.

(2)四边形AEGF是菱形.
证明:∵△ABE≌△ADF,
∴∠BAE=∠DAF,
∵四边形ABCD是正方形,
∴AC平分∠BAD,
∴∠DAC=∠BAC=45°,
∴∠EAC=∠FAC,
又∵AE=AF,
∴AO垂直平分EF(三线合一定理),
∴OE=OF,
又∵OG=OA,
∴四边形AEGF是平行四边形,
∵AE=AF,
∴平行四边形AEGF是菱形.
点评:本题主要考查对正方形的性质,平行四边形的判定,菱形的判定,平行线分线段成比例定理,全等三角形的性质和判定等知识点的理解和掌握,能综合运用这些性质进行推理是解此题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网