题目内容
如图所示,点A1,A2,A3在x轴上,且OA1=A1A2=A2A3,分别过点A1,A2,A3作y轴的平行线,与反比例函数y=
(x>0)的图象分别交于点B1,B2,B3,分别过点B1,B2,B3作x轴的平行线,分别于y轴交于点C1,C2,C3,连接OB1,OB2,OB3,那么图中阴影部分的面积之和为________.
分析:先根据反比例函数上的点向x轴y轴引垂线形成的矩形面积等于反比例函数的k值得到S△OB1C1=S△OB2C2=S△OB3C3=
解答:根据题意可知S△OB1C1=S△OB2C2=S△OB3C3=
∵OA1=A1A2=A2A3,A1B1∥A2B2∥A3B3∥y轴
设图中阴影部分的面积从左向右依次为s1,s2,s3
则s1=
∵OA1=A1A2=A2A3,
∴s2:S△OB2C2=1:4,s3:S△OB3C3=1:9
∴图中阴影部分的面积分别是s1=4,s2=1,s3=
∴图中阴影部分的面积之和=4+1+
故答案为:
点评:此题综合考查了反比例函数的性质,此题难度稍大,综合性比较强,注意反比例函数上的点向x轴y轴引垂线形成的矩形面积等于反比例函数的k值.
练习册系列答案
相关题目