题目内容
如图,小亮书上的三角形被墨迹污染了一部分,很快他就根据所学知识画出一个与书上完全一样
的三角形,那么这两个三角形完全一样的依据是( )
A. SSS B. SAS C. AAS D. ASA
如图1,在平面直角坐标系中,二次函数的图象的顶点为D点,与y轴交于C点,与x轴交于A、B两点, A点在原点的左侧,B点的坐标为(3,0),OB=OC ,tan∠ACO=.
(1)求这个二次函数的表达式;
(2)经过C、D两点的直线,与x轴交于点E,在该抛物线上是否存在这样的点F,使以点A、C、E、F为顶点的四边形为平行四边形?若存在,请求出点F的坐标;若不存在,请说明理由;
(3)若平行于x轴的直线与该抛物线交于M、N两点,且以MN为直径的圆与x轴相切,求该圆半径的长度;
(4)如图2,若点G(2,y)是该抛物线上一点,点P是直线AG下方的抛物线上一动点,当点P运动到什么位置时,△APG的面积最大?求出此时P点的坐标和△APG的最大面积.
如图,PA、PB是⊙O的切线,A、B是切点,点C是劣弧AB上的一个动点,若∠ACB=110°,则∠P的度数是( )
A. 55° B. 30° C. 35° D. 40°
如图:BO、CO是∠ ABC,∠ ACB的两条角平分线,∠A=100°,则∠BOC的度数为_____.
如图,将三角尺的直角顶点放在直尺的一边上,若∠1=30°,∠2=50°,则∠3的度数等于( )
A. 20° B. 30° C. 50° D. 55°
如图,顶点为M的抛物线y=a(x+1)2-4分别与x轴相交于点A,B(点A在点B的右侧),与y轴相交于点C(0,﹣3).
(1)求抛物线的函数表达式;
(2)判断△BCM是否为直角三角形,并说明理由.
(3)抛物线上是否存在点N(点N与点M不重合),使得以点A,B,C,N为顶点的四边形的面积与四边形ABMC的面积相等?若存在,求出点N的坐标;若不存在,请说明理由.
用适当的方法解下列方程:
(1)(x+1)(x-2)=x+1; (2) x2-x=1
(3) (4).
观察下列各式
(1) ; (的正整数)
(2)用以上规律计算:
如图,在△ABC中,∠C=90°,∠B=30°,AD平分∠CAB交BC于点D,E为AB上一点,连接DE,则下列说法错误的是( )
A. ∠CAD=30° B. AD=BD C. BD=2CD D. CD=ED