题目内容
如图,直线y=kx-2分别交x轴、y轴于点A、B,点P为AB上一点且PC为△AOB的中位线,PC的延长线交反比例函数
的图象于点Q,若PQ=
,求k的值.
∴令x=0,得到y=-2,
∴B(0,-2),即OB=2,
又PC为△AOB的中位线,
∴PC=
∵OB⊥OA,∴PQ⊥OA,
∵PQ=
∴CQ=
∴点Q的纵坐标为
将y=
∴Q(2,
∴OC=2,
∴P(2,-1),
把P(2,-1)代入y=kx-2得:2k-2=-1,
则k=
分析:由一次函数y=kx-2与y轴交于点B,令x=0,求出对应的y=2,可得出B的坐标,确定出OB的长,由PC为三角形AOB的中位线,根据三角形中位线定理得到PC等于OB的一半,由OB的长求出PC的长,同时得到PC与OB平行,由OB垂直于OA,得到PQ垂直于OA,用PQ-PC求出QC的长,即为Q的纵坐标,将Q的纵坐标代入反比例函数解析式中求出对应x的值,即为Q的横坐标,确定出Q的坐标,进而得到OC的长,由OC及PC的长,确定出P的坐标,将P的坐标代入y=kx-2中,即可求出k的值.
点评:此题属于反比例函数的综合题,涉及的知识有:一次函数与坐标轴的交点,三角形的中位线定理,以及平面坐标系中点与坐标的关系,其中根据题意得出P的坐标是解本题的关键.
练习册系列答案
相关题目
| A、3 | ||
B、
| ||
C、
| ||
D、-
|
| 1 |
| 2 |
| A、x<2 |
| B、x>-1 |
| C、x<1或x>2 |
| D、-1<x<2 |