题目内容


如图,在Rt△ABC中,∠ACB=90°,D、E分别为AB,AC边上的中点,连接DE,将△ADE绕点E旋转180°得到△CFE,连接AF,AC.

(1)求证:四边形ADCF是菱形;

(2)若BC=8,AC=6,求四边形ABCF的周长.


(1)证明:∵将△ADE绕点E旋转180°得到△CFE,

∴AE=CE,DE=EF,

∴四边形ADCF是平行四边形,

∵D、E分别为AB,AC边上的中点,

∴DE是△ABC的中位线,

∴DE∥BC,

∵∠ACB=90°,

∴∠AED=90°,

∴DF⊥AC,

∴四边形ADCF是菱形;

(2)解:在Rt△ABC中,BC=8,AC=6,

∴AB=10,

∵D是AB边上的中点,

∴AD=5,

∵四边形ADCF是菱形,

∴AF=FC=AD=5,

∴四边形ABCF的周长为8+10+5+5=28.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网