题目内容
如图,在梯形ABCD中,AD∥BC,对角线AC⊥BC,AD=4cm,∠D=45°,BC=3cm,点E为射线BC上的动点,点F在射线CD上(点F与点C不重合),且满足∠AFC=∠ADE.
(1)求证:AD•EC=DF•DC;
(2)当点E为BC延长线上的动点,点F在线段CD上(点F与点C不重合),设BE=x,DF=y,求y关于x的函数解析式,并写出函数的定义域;
(3)当△AFD的面积为2cm2 时,求BE的长.

(1)求证:AD•EC=DF•DC;
(2)当点E为BC延长线上的动点,点F在线段CD上(点F与点C不重合),设BE=x,DF=y,求y关于x的函数解析式,并写出函数的定义域;
(3)当△AFD的面积为2cm2 时,求BE的长.
考点:相似三角形的判定与性质,勾股定理,梯形,解直角三角形
专题:
分析:(1)运用∠AFC=∠ADE 寻找相似三角形即可得解;
(2)由条件知道△ACB是直角三角形,利用(1)中线段比来代换y与x之间的关系,可得解;
(3)运用(2)的相似结论,根据相似三角形的面积比得关系就可以求出BE的长.
(2)由条件知道△ACB是直角三角形,利用(1)中线段比来代换y与x之间的关系,可得解;
(3)运用(2)的相似结论,根据相似三角形的面积比得关系就可以求出BE的长.
解答:解:(1)∵AD∥BC,
∴∠ADF=∠DCE.
∵∠AFC=∠FDA+∠FAD,∠ADE=∠FDA+∠EDC,
又∵∠AFC=∠ADE,
∴∠FAD=∠EDC.
∴△ADF∽△DCE.
∴AD•EC=DF•DC.
(2)∵AD∥BC,
∴∠ACB=∠DAC.
∵AC⊥BC,
∴∠ACB=90°.
∴∠DAC=90°.
∵∠D=45°,
∴∠ACD=45°.
∴AD=AC=4.
又∵在Rt△ADC中,DC2=AD2+AC2,
∴DC=4
cm.
∵BE=x,
∴CE=x-3.
又∵DF=y,
∴
=
.
∴y=
x-
.
定义域为3<x<11.
(3)由(2)可得:△ADF∽△DCE,
∴
=(
)2
∵S△AFD=2,AD=4,DC=4
,
∴S△DCE=4.
∵S△DCE=
×CE×AC,
∴
×(BE-3)×4=4,
∴BE=5.
∴∠ADF=∠DCE.
∵∠AFC=∠FDA+∠FAD,∠ADE=∠FDA+∠EDC,
又∵∠AFC=∠ADE,
∴∠FAD=∠EDC.
∴△ADF∽△DCE.
∴AD•EC=DF•DC.
(2)∵AD∥BC,
∴∠ACB=∠DAC.
∵AC⊥BC,
∴∠ACB=90°.
∴∠DAC=90°.
∵∠D=45°,
∴∠ACD=45°.
∴AD=AC=4.
又∵在Rt△ADC中,DC2=AD2+AC2,
∴DC=4
| 2 |
∵BE=x,
∴CE=x-3.
又∵DF=y,
∴
| 4 | ||
4
|
| y |
| x-3 |
∴y=
| ||
| 2 |
3
| ||
| 2 |
定义域为3<x<11.
(3)由(2)可得:△ADF∽△DCE,
∴
| S△ADF |
| S△DCE |
| AD |
| DC |
∵S△AFD=2,AD=4,DC=4
| 2 |
∴S△DCE=4.
∵S△DCE=
| 1 |
| 2 |
∴
| 1 |
| 2 |
∴BE=5.
点评:本题考查了相似三角形的性质与判定,勾股定理、梯形、等腰三角形的性质及解直角三角形的多个知识点.
练习册系列答案
相关题目
| A、34° | B、36° |
| C、38° | D、40° |
| A、3 | B、5 | C、4 | D、不确定 |