题目内容
如图,一次函数y1=x+1的图像与反比例函数(k为常数,且k≠0)的图像都经过点A(m,2).
(1)求点A的坐标及反比例函数的表达式.
(2)结合图像直接比较:当x>0时,y1与y2的大小.
如图,△ABC中,∠ACB=90,BC=6cm,AC=8cm ,动点P从△ABC的顶点A出发,以2cm/s的速度向B点运动,连接CP,设点P的运动时间为t(单位:s),则当t的时间为__________时,△BCP为等腰三角形。
如图,⊙O的直径FD⊥弦AB于点H,E是上一动点,连结FE并延长交AB的延长线于点C,AB=8,HD=2.
(1)求⊙O的直径FD;
(2)在E点运动的过程中,EF•CF的值是否为定值?若是,求出其定值;若不是,请说明理由;
(3)当E点运动到的中点时,连接AE交DF于点G,求△FEA的面积.
甲、乙两名学生10次立定跳远成绩的平均数相同,若甲10次立定跳远成绩的方差S甲2=0.006,乙10次立定跳远成绩的方差S乙2=0.035,则( )
A. 甲的成绩比乙的成绩稳定
B. 乙的成绩比甲的成绩稳定
C. 甲、乙两人的成绩一样稳定
D. 甲、乙两人成绩的稳定性不能比较
如图,△ABC是等边三角形,点A坐标为(-8,0)、点B坐标为(8,0),点C在y轴的正半轴上.一条动直线l从y轴出发,以每秒1个单位长度的速度沿x轴向右平移,直线l与直线交于点D,与线段BC交于点E.以DE为边向左侧作等边△DEF,EF与y轴的交点为G.当点D与点E重合时,直线l停止运动,设直线l的运动时间为t秒(t >0).
(1)填空:点C的坐标为_____,四边形ODEG的形状一定是_____;
(2)请用t 的代数式表示线段DE 的长;
(3)试探究:四边形ODEG能不能是菱形?若能,求出相应的t的值;若不能,请说明理由.
(4)当t为何值时,点G恰好落在以DE为直径的⊙M上?并求出此时⊙M的半径.
计算:
(1)|﹣2|﹣ +(﹣2016)0;
(2)-
如图,一个量角器放在∠BAC的上面,则∠BAC=______________.
如图,BD为正方形ABCD的对角线,BE平分∠DBC ,交DC与点E,将△BCE绕点C按顺时针旋转90°得到△DCF, 若CE=3cm,则BF=_______cm.
如图,已知:在平面直角坐标系中,直线l与轴相交于点,其中.与轴相交于点.抛物线的顶点为,它与直线l相交于点,其对称轴分别与直线l和轴相交于点和点.
(1)设, 时,
① 求出点、点的坐标.
② 抛物线上是否存在点,使得以四点为顶点的四边形为平行四边形,如果存在,直接写出点的坐标;如果不存在,请说明理由.
(2)当以为顶点的三角形与相似且满足三角形的面积与三角形面积之比为1∶3时,求抛物线的函数表达式.